If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2+110n+35=0
a = 15; b = 110; c = +35;
Δ = b2-4ac
Δ = 1102-4·15·35
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-100}{2*15}=\frac{-210}{30} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+100}{2*15}=\frac{-10}{30} =-1/3 $
| 7-7k-2k=1-6k | | 11j-17+11=11j+14 | | 15x-15=-12 | | 3.25x+1+2x=65 | | 2/3+1/6=-3/4x+1 | | 26=1/6m+5 | | 7k=63 | | 4x+0=4 | | 1/3u-7/4=-7/5 | | 9^x+6^x=2.4^x | | 31/4x+1+2x=65 | | 7m-7-6m-16=1+4 | | -1+7h=3+7h | | 85=12c+35-2c | | x+25+2x=11-2x-14 | | 3x+4x+5=2x-5 | | 4(12t−2)=2(t−3) | | 7m-7-6m=16=1+4 | | 4d+4.32=6.48 | | X²-3x=4 | | 4-i+4-i=0 | | -10t-9+7=-10t+10 | | 4r-5=2-(5-5r) | | -6(x-3)=5(4-x) | | 8p-7=-43 | | -5w+6=8w+4 | | 3*0-3y=9 | | (4-i)^2=0 | | 4n-6+4n+4=8+6n+2 | | 5n+10-2n=-32 | | 8-3v=-7-8v | | 4x+x+6=11x+6x+6 |